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Heat transport by parallel-roll convection in a 
rectangular container 
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(Received 17 December 1986 and in revised form 14 May 1987) 

Heat-transport measurements are reported for thermal convection in a rectangular 
box of aspect ratio 10 x 6. Results are presented for Rayleigh numbers up to 35R,, 
Prandtl numbers between 2 and 20, and wavenumbers between 0.6 and 1.0kC, where 
R, and k, are the critical Rayleigh number and wavenumber for the onset of 
convection in a layer of infinite lateral extent. The measurements are in good 
agreement with a phenomenological model which combines the calculations of 
Nusselt number, as a function of Rayleigh number and roll wavenumber for two- 
dimensional convection in an infinite layer, with a nonlinear amplitude-equation 
model developed to account for sidewell attenuation. The appearance of bimodal 
convection increases the heat transport above that expected for simple parallel-roll 
convection. 

1. Introduction 
A long-standing problem of major interest in the study of thermal convection has 

been the measurement of heat transport MI a function of the imposed temperature 
gradient. For a horizontal fluid layer heated from below, it has been recognized for 
many years (cf. Malkus 1954a, b) that a number of discrete transitions in heat 
transport occur as the temperature difference across the layer (in dimensionless 
terms, the Rayleigh number R) is increased. The fist transition at the critical 
Rayleigh number R, marks the onset of convection, usually with a two-dimensional 
pattern of parallel rolls. Above R, the effective thermal conductivity of the fluid (in 
dimensionless terms, the Nusselt number N) increases steadily with R. However, as 
Malkus observed, there are several discontinuities in the rate of change of heat 
transport with increasing Rayleigh number, even in the regime of highly turbulent 
flow. Subsequent investigations (e.g. Willis & Deardorff 1967 ; Rossby 1969 ; 
Krishnamurti 1970a, b, 1973; Chu & Goldstein 1973 ; Threlfalll975) verified Malkus’ 
observations qualitatively but disclosed that the structure of the heat transport 
curve (e.g. the Rayleigh numbers at which transitions occur) depends significantly on 
factors such as the fluid properties (i.e. the Prandtl number (r) and the container 
geometry. . 

Some of these transitions in heat transport have now been associated with changes 
in the flow pattern. For example, for moderately large Prandtl numbers, the second 
transition (following onset of convection at R,) occurs near R = 12R, and haa now 
been identified with the onset of bimodal convection;t the next transition, near 

t Bimodal convection, which is initiated by the cross-roll instability, involves the formation of 
parallel rolls in the horizontal boundary layer, superimposed at right angles to the original 
rolls. 



206 R. W .  Walden, P .  Kolodner, A .  Passner and C .  M .  Surko 

30R,, is evidently related to the onset of time dependence (Krishnamurti 1973). 
Additional transitions or ‘kinks’ in the slope of Nusselt versus Rayleigh number 
occur up to the largest Rayleigh numbers investigated experimentally ( x  lO’R,), 
but the mean Nusselt number appears to approach a power-law dependence on 
Rayleigh number with an exponent which depends weakly on Prandtl number 
(Busse 1978). 

For Rayleigh numbers R 5 100R,, it  is now apparent that for laterally confined 
flows the parameters R and u are not sufficient to specify the flow dynamics. 
However, within the entire domain for which the flow is substantially two- 
dimensional, we find that the heat transport and flow dynamics are consisent with 
predictions that take into account roll wavenumber and container geometry as well 
as R and u. We have studied convection in a rectangular box with dimensions 10 x 5 
times the height. Pattern transitions are observed (Kolodner et al. 1986) that appear 
to correspond closely to the instabilities described by two-dimensional linear 
stability theory for a fluid layer of infinte horizontal extent (Busse 1978). The pattern 
transitions are always accompanied by a change in heat transport; and, provided the 
initial and final patterns are substantially two-dimensional, the heat transport is 
quantitatively consisent with the wavenumber-dependent predictions of the theory. 
Although no exact models are available to calculate the Nusselt number in a 
container of finite aspect ratio, in $4 we present an heuristic model which combines 
nonlinear calculations for an infinite layer with an amplitude equation model to 
account for finite-aspect-ratio effects. 

2. Apparatus and procedure 
2.1. Description of apparatw 

The heat-transport and Rayleigh-number measurements reported here were done in 
conjunction with our studies of the stability of patterns described by Kolodner et al. 
(1986). The experiments were conducted in a rectangular box with a copper bottom 
plate and a sapphire top plate with interchangeable glass or acrylic walls. The 
interior dimensions of the containers are summarized in table 1. (Details of cell 
construction and materials are described by Kolodner et al. 1986.) The convection 
container is enclosed in a vacuum box, and a radiation shield surrounds the bottom 
plate of the container. The temperature of the top plate of the convection container 
was maintained constant to about & l  mK for extended periods of time. Prandtl 
numbers (CT = V / K ,  where v is kinematic viscosity and K is thermal diffusivity) 
ranging from 2.2 to 19 were achieved by varying the,mean temperature of the 
working fluid (water or ethyl alcohol). Convection, patterns were observed by 
directing a broad, collimated laser beam vertically on to the cell ; the light reflected 
from the bottom plate and refracted by density variations in the fluid was projected 
on to a screen, and the image of the flow pattern was recorded on video tape. 

In these experiments the top plate of the container was maintained at constant 
temperature while a steady heat flux was applied to the bottom plate. (Under 
conditions of constant heat flux the mean temperature difference A!P across the fluid 
layer varies inversely with the effective thermal conductivity of the fluid.) The usual 
experimental procedure was to vary the heat flux in small steps, allow the system to 
settle, and measure A!P. In the discussion that follows we express the temperature 
difference AT in terms of the dimensionless Rayleigh number R = gabTd3/Kv, where 
g is the acceleration due to gravity, a is the isobaric thermal expansion coefficient, 
and d is the height of the fluid layer; we express the heat flux Q in terms of the 
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Aspect ratios 
Wall 

cell r, r, d(cm) material 

A 10.61 5.32 0.461 Acrylic 
B 9.25 4.42 0.525 Glass 

TABLE 1. Convection cells 

dimensionless Nusselt number N = Qd/hSAT, where h is the thermal conductivity of 
the fluid and S is the horizontal area of fluid layer. 

2.2.  Nusselt-number measurements 
Accurate determination of the Nusselt and Rayleigh numbers required attention to 
both carefully measuring and minimizing sources and sinks of heat. Thermal 
shielding and evacuation of the apparatus minimized external convective and 
radiative heat flow. The major contributions to the bottom-plate heating were the 
4-terminal wire-wound heater, the thermistors (one in a d.c. bridge, and usually one 
in an a.c. bridge circuit), and heating from the 15 mW He-Ne laser used for 
shadowgraphy . 

Heating due to the a.c. bridge thermistor was negligible ( x  4 pW). Heating due to 
the d.c. bridge thermistor was strongly temperature dependent (but accurately cali- 
brated) and was typically x 100 pW. The laser heating was also small ( x 200 pW), 
with a slow variation over several months as the laser aged. By comparison, about 
15-80mW was required to reach R, for these experiments. The 4-terminal 
measurements of heater power were accurate to an estimated & 0.1 YO. 

The bottom plate of the container was well radiation shielded from the upper (and 
colder) part of the apparatus. Heat transfer laterally through the sidewalls - due to 
radiation - was small at low Rayleigh numbers and assumed to be negligible. 
However, the container walls and the supporting frame provided a heat path parallel 
to the fluid. For example, heat transfer through the glass walls was about 80% of 
that through the water for R < R,. 

The thermal conductivity of the walls was determined for purposes of Nusselt- 
number determination using the measured thermal conductivity and temperature 
dependence of the wall material and estimating the effective wall area in contact with 
the upper and lower container boundaries. This effective area is less than the actual 
wall cross-section because of the O-rings and O-ring grooves at the contact surfaces. 
This (one constant) value of effective area was chosen to give N for R < R, at all 
operating temperatures. In fact, there was a slight increase in the effective thermal 
conductivity of the walls after the container was filled, probably owing to fluid filling 
the inner side of the O-ring grooves and effecting better heat transfer between the 
container wall and the sapphire plate. 

The thermal conductivity of the copper bottom plate (about 660 times that of 
water) was sufficient to allow neglect of lateral gradients; and, indeed, thermistor 
measurements detected no lateral gradient except at very high Rayleigh number. 
However, the fmite thermal conductivity of the sapphire top plate (about 50 times 
that of water) is not completely negligible. The maximum temperature difference 
across the sapphire can be estimated from the measured heat flux and the known 
thermal conductivity of the sapphire. However, because the sapphire plate is larger 
than the convection container and because of the finite thermal conductivity of the 
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Uncertainty Uncertainty 
Prandtl Expt. in RJR,, due to fluid Nusselt 

Container number RJR,, f ( 3  mC+2%)t parameters11 number 

A 2.2 
3.0 
3.5 
4.4 
5.5 

B 3.5 
11  
15 
19 

1.115 
1.047 
1.069 
1.023 
1.028 
1 .OM 
1.056 
0.998 
0.988 

(0.038)$ 
0.032 
0.029 
0.027 
0.024 
0.029 
0.059 
0.043 
0.034 

0.010 0.9752 
0.008 1 .OO70 
0.007 0.9683 
0.006 1.0106 
0.0015 1.0275 

0.03 
0.03 
0.03 

0.007 1 .00q 

t Estimate of uncertainty in experimental determination of R,/R,, (see text) ; tabulated values 
are equivalent to (3 mC+2 %). 

$ During tests with Prandtl number 2.2 there was excessive drift in the computer-interfaced 
instrumentation (which subsequently required some major repairs) ; uncalibrated drift waa at  leaat 
5 % for some runs at this Prandtl number. 

11 Uncertainty in RIR, due to uncertainty in the fluid parameters. The fluid parameters and 
estimated uncertainties are tabulated in Kolodner et al. (1986). 

7 Since the glass walls account for up to 80% of the heat transport when the cell is filled with 
ethanol, the temperature-dependent thermal conductivity of the walls waa determined by 
requiring that N = 1.00  below R, for each of the three highest Prandtl numbers. (Consistent values 
for wall thermal conductivity were obtained whether the cell was filled with water or with 
ethanol.) 

TABLE 2. Critical Rayleigh and Nusselt numbers 

container walls, the temperature of the sapphire surface which contacts the fluid in 
the convection container is non-uniform. The vertical temperature difference across 
the sapphire at R, is approximately 1 YO of R,. For the case of water with plastic 
walls, the temperature of the lower surface of the sapphire a t  the edges of the 
container is larger relative to the temperature of the sapphire at the centre of 
the container by about 0.5% of R, at R,. For the case of ethanol with glass walls, 
the temperature at  the edges is depressed relative to the centre by about the same 
amount. 

2.3. Sources of error 

Uncertainties in the determination of Rayleigh and Nusselt numbers were normally 
dominated by fluctuations, drift and calibration uncertainties in the instrumentation 
for measuring the temperature of the bottom plate. Although temperature 
determinations to f 1 mK were possible for individual measurements of the bottom- 
plate temperature, the normal procedure of computer-controlled runs of a least 
several days’ duration between calibration times introduced uncertainties (both 
random and systematic) in determination of R and N. The uncertainties were 
typically expresssed aa a combination of several components: (a) random noise in 
temperature measurement of x 3 mK (including x 1 mK fluctuation of the top-plate 
temperature) ; (b) uncalibrated nonlinearities and slow drift of the temperature- 
measurement instrumentation - about 1 YO of the full-scale temperature range for a 
given experimental run; and (c )  uncertainty in the container depth and fluid 
properties used to compute Rayleigh number. In  table 2 values of the critical 
Rayleigh number R, are given together with estimated sources of error. (The 
procedure for calculation of Nusselt and Rayleigh numbers from the experimental 
measurements is described by Kolodner el al. 1986.) 
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3. Typical results 
3.1. Determination of critical Rayleigh number R,  

For a laterally infinite fluid layer confined between fixed horizontal boundaries of 
high thermal conductivity, the critical Rayleigh number for onset of convection is 
R,, = 1708 (Chandrasekhar 1961). However, when the layer is confined by lateral 
boundaries, the onset of convection is generally suppressed until a higher Rayleigh 
number R, > R,,. The experimental measurements of the critical Rayleigh number 
R, are not of sufficient accuracy to definitively test existing models; however, it is 
appropriate to examine the differences between the values of R, (as a function of 
aspect ratio) calculated from several numerical models. 

A number of models for determination of R, have been studied numerically. 
Although these studies individually are not matched to the parameter range or 
boundary conditions of our experiments, collectively they provide a reasonably 
coherent picture. Values of R,, derived or extrapolated from several of these model 
calculations, are compared in table 3. 

Values of R, for fluid in a rectangular box with perfectly conducting sidewalls were 
computed by Davis (1967) and by Catton (1970) using ‘finite-roll’ trial functions 
with a Galerkin method which gives an upper limit for R,. (The ‘finite rolls’ are 
defined as cells that have only two finite (non-zero) velocity components dependent 
on all three spatial variables.) Later Catton ( 1 9 7 2 ~ )  extended his studies to boxes 
with insulating sidewalls. Catton’s results are shown in figure 1 ,  for which the 
calculated values of R, are normalized by the expression (T: + ri). 4 is the smaller 
of the two aspect ratios, and a and b are chosen to optimize the fit to the data. 

Several numerical studies (Davies-Jones 1970, for a rectangular box with free 
horizontal boundaries and either insulating or conducting sidewalls ; Charlson & Sani 
1970, for a cylindrical box; and Catton 1972b, for rectangular boxes of very small 
aspect ratio) indicate that R, is significantly smaller for insulating boundaries than 
for conducting boundaries for most aspect ratios. 

In  addition to exploring the effects of finite conductivity of the sidewalls, Davies- 
Jones demonstrated that the ‘finite-roll’ trial functions used in the Galerkin 
calculations are not exact solutions to the linearized convection problem, and that 
the true solutions always give lower values for R, for any lateral boundary 
conditions. The Davies- Jones calculations, which assume free horizontal boundary 
conditions, were not extended to the rigid-boundary case, however. 

Luijkx & Platten (1981) extended the work of Davis, Catton and Davies-Jones by 
the use of fully three-dimensional calculations for a rectangular box with insulating 
lateral boundaries and one infinite horizontal dimension. B. F. Edwards (1986, 
private communication), beginning with the same velocity expansion functions used 
by Catton ( 1 9 7 2 ~ )  for a box with insulating sidewalls, has considered fully three- 
dimensional parallel rolls as well as crossed rolls. For boxes with nearly equal 
horizontal dimensions and small aspect ratio (r < 12) Edwards found that crossed 
rolls are clearly preferred because of their significantly smaller R,. 

Amplitude-equation calculations of R, give an asymptotic formula for the critical 
Rayleigh number (Greenside & Coughran 1984; Wesfreid et al. 1978): 

Here, 6; = 0.148. Thus E ,  depends only on the large aspect ratio of the container, 
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Symbol 
0 

0 

m 
0 
A 

A 
v 
0 

0 
b 

D 

0 
+ 

r, 
0.125 
0.25 
0.50 
1 .o 
I .5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
1.2 

+ 

0.1 10 

FIQURE 1. Calculations c R,, the Rayleigh number for onset of convection, as a function of aspect 
ratio from Catton (1972 a). The calculated values of R, are normalized by a simple function of the 
aspect ratios, f, and f, (with r, < r,), which facilitates comparison with other models. The dashed 
line is only a guide to the eye. 

provided the small dimension is at least a few roll diameters. For the aspect ratios 
typical of our experiments, this model gives values of E ,  somewhat smaller than the 
Galerkin procedure (cf. table 3). The major qualitative difference between the 
Galerkin and amplitude-equation models is that, for the latter, E ,  depends primarily 
on the larger aspect ratio, while for the former, E ,  depends significantly on both 
aspect ratios. 

Stork & Muller (1972) studied experimentally the onset of convection in small 
rectangular boxes with poorly conducting sidewalls. Their determinations of R, 
generally lie between the predicted values of the models for insulating and 
conducting walls. 

Our experimental determination of R, (which should not depend on Prandtl 
number, but only on aspect ratio and properties of the container boundaries) seems 
to be consistent with the predictions of the models but is not of sufficient accuracy 
to distinguish among them (cf. tables 2 and 3). R, is determined experimentally from 
observing the transition in Nusselt number as Rayleigh number is increased ; in a few 
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Rayleigh number, R / R ,  

FIQURE 2. Nusselt number as a function of Rayleigh number measured for different convective 
patterns in Cell A for CT = 5.5. The roll patterns &re illustrated schematically: the heavy solid lines 
represent up-flow boundaries and the dashed lines represent down-flow boundaries of adjacent 
rolls. 

cases, these measurements were verified by visual observations using digital image 
processing. For R < R,, the Nusselt number is exactly 1.0 by definition; therefore, 
departures from 1.00 in the experimentally determined values of N represent 
uncertainties in the fluid parameters or noise in the experimental measurements. 

3.2. Flow pattern transitions 
As the heat flux (and thus the Rayleigh number) is increased slowly, convection 
begins at the critical Rayleigh number R, with a pattern of rolls parallel to the short 
side of the container. By means of transient heating, other patterns such as rolls 
parallel to the long side of the container can be initiated. In general, for Rayleigh 
numbers R B R, and CT 6 10, transitions to parallel-roll patterns of smaller 
wavenumber (fewer rolls) are stimulated by instabilities such as the knot and 
skewed-varicose instabilities (see Kolodner et al. 1986). As the Rayleigh number is 
increased toward the critical value for such a transition, the convection pattern is 
progressively distorted. A t  the transition Rayleigh number the distortion begins to 
grow - very slowly at first - while the heat flux remains constant. Then, in the period 
of a few vertical diffusion times, a roll pair (or sometimes a single roll) is removed from 
the pattern. After the transition, the remaining rolls re-anneal to a simple parallel- 
roll pattern of approximately uniform wavenumber. After several such transitions 
other instabilities may be encountered with increasing Rayleigh number which result 
in complex three-dimensional patterns or sustained time-dependent behaviour or 
both. For Prandtl numbers CT 2 10 and R 9 R, the first instability encountered is 
usually the cross-roll instability, which results in ' bimodal ' convection in which 
parallel rolls are formed in the horizontal boundary layer and superimposed at right 
angles to the original rolls. For still larger Rayleigh numbers, transitions to time 
dependence and more complex patterns occur. 

The pattern distortions and subsequent transitions to smaller wavenumber which 
are observed for small Prandtl numbers are accompanied by a monotonically 
decreasing Nusselt number, while the appearance and growth of bimodal convection 
enhances the heat transport relative to that expected for two-dimensional parallel 



Heat transport by parallel-roll convection in a rectangular container 213 

3.0 I I I I 1 

Rayleigh number, R/ R, 

FIQURE 3. Experimental meaaurementa of Nusselt number versus Rayleigh number for Cell A (see 
table 1). 0,  u = 5.5; 0,  u = 4.4; 0, u = 3.5; A, u = 3.0; V, c = 2.2. (a) Ten-roll pattern, (b) nine 
rolls, (c) eight rolls, (d) seven rolls, and (e) six rolls. The horizontal bars identify regions of pattern 
distortion due to the skewed-varicose instability. The vertical scales are the same for all the data 
with the zeros offset for each data set, aa indicated on the left axis. 

rolls. The transition to time dependence is often accompanied by pattern changes 
that obscure the explicit effects of time-dependent instabilities on the mean Nusselt 
number. A detailed description of these observations will be presented in $5. 

3.3. Heat transport 
An example of the pattern changes which occur with changing Rayleigh number and 
the consequent changes in Nusselt number is illustrated in figure 2 for u = 5.5. 
Convection begins at R,, with a pattern of ten rolls parallel to the short side of the 
container. This pattern is stable for R ;5 7R,, and N increases monotonically with 
increasing R. When R is increased slowly above 7R,, the ten-roll pattern becomes 
progressively distorted ; then a roll pair is ejected, leaving eight parallel rolls. Other 
hysteretic pattern transitions occur when R is changed further, aa shown in figure 2. 
In general, Nusselt number decreases with decreasing roll wavenumber. This is 
consistent with the expectations of theory, to be described in 94. 

The experimental measurements of Nusselt number are presented in figures 3 and 



214 R. W .  Walden, P .  Kolodner, A .  Passner and C .  M .  Surko 

I I I I 

2 g 
a 
L 

P 
E 

3.5 

3.0 

2.5 

2.0 

I .5 

I .o 
1 2 5 10 20 

Rayleigh number, RIR, 

FIQURE 4. Experimental measurements of Nusselt number versus Rayleigh number for Cell B (see 
table 1). 0, u = 19; 0,  u = 15; A, = 11 ; V, u = 3.5. (a) Flow pattern is four long rolls, (b) eight 
short rolls, ( c )  six short rolls. The horizontal bars identify the range of Rayleigh number for which 
bimodal convection grows in spatial extent. 

4 for those cases in which the flow pattern is substantially two-dimensional so that 
roll wavenumber is well defined. Each section of figures 3 and 4 includes the data of 
all Prandtl numbers for a single mean wavenumber. The horizontal bars in figures 
3 (a) and 4(a-c) indicate the onset of substantial departures from two-dimensional 
flow. In figure 3(a) ,  the bars indicate the range of substantial distortion of the flow 
pattern by the skewed-varicose instability just preceding the transition to a pattern 
of fewer rolls. In figure 4, the bars identify the gradual appearance of bimodal 
convection in response to the cross-roll instability. These transitions will be discussed 
further in $5.  

4. A model for heat transport 
It has long been recognized (cf. Segel 1969) that the presence of sidewalls (i.e. finite 

aspect ratio) suppresses convective heat transport and thus shifts the Nusselt 
number to a smaller value than that expected from the theory for infinite aspect 
ratio. A few of the recent experimental determinations of Nusselt number verify this 
prediction (cf. table 4) ; however, previous measurements of Nusselt number have 
usually been made in the absence of information about wavenumber, which is an 
essential parameter for comparison with theory. 

There are two standard approaches to computation of the hydrodynamic variables 
(velocity, temperature, and heat transport) in Rayleigh-Bdnard convection, neither 
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of which is entirely satisfactory for comparison with our experimental data. The first 
approach involves computations using the full, nonlinear fluid equations assuming a 
two-dimensional convective flow. It has the advantage that good results are possible 
for all values of the parameter space (Rayleigh number, wavenumber, and Prandtl 
number) for which two-dimensional convection is stable. However, these two- 
dimensional models do not account for the effects of finite aspect ratio. The other 
approach is the amplitude-equation model, which is an expansion to lowest order in 
E = (R /R ,  - 1) of the hydrodynamic equations. This model is accurate only for rather 
small E ,  but it can account well for the flow attenuation due to the imposition of finite 
lateral boundaries. 

We have explored an intuitive model which takes advantage of the strengths of 
both traditional approaches - combining the Rayleigh-number, Prandtl-number, 
and wavenumber dependence of the two-dimensional models with the aspect-ratio 
dependence of the amplitude-equation model. As Segel (1969) observed from his 
amplitude-equation studies of convection in a laterally bounded layer, the mean 
amplitude of convection in the interior of the layer is nearly the same as for an 
unbounded layer, while the flow attenuation due to the lateral walls is confined 
primarily to a well-defined boundary layer at  the walls. According to Segel’s 
calculations (which assume free horizontal boundaries), when the Rayleigh number 
is 5 or 10 % above R,,, the effects of the lateral walls should be confined to a boundary 
layer whose thickness is of the order of a wavelength (that is, the width of a roll pair). 
However, more generally, the width and profile of the boundary layer depend on the 
orientation of the rolls with respect to the sidewalls (Zaleski, Pomeau & Pumir 1984). 
Thus our heuristic model for Nusselt number contains the effects of finite aspect ratio 
essentially as an attenuation of the flow amplitude in a boundary layer adjacent to 
each sidewall, with attenuation computed separately for walls parallel to and 
perpendicular to the convective rolls. Specifically, the calculations for an infinte layer 
are multiplied by aspect-ratio-dependent factors which account for the sidewall 
attenuation. While the amplitude-equation model should not be expected to 
represent accurately the aspect-ratio dependence of the Nusselt number for E B 1, it 
does remarkably well when the model is compared with the experimental data ($5).  
We begin by reviewing each of the components of the combined model, and conclude 
in $4.3 with further discussion of the utility and limitations of this model. 

4.1. The nonlinear two-dimensional model 

There have been a number of nonlinear calculations of heat transport across a 
laterally infinite fluid layer assuming two-dimensional parallel-roll convection (Busse 
1967; Plows 1968; Denny & Clever 1974; Clever & Busse 1974). These authors have 
employed several different computational techniques (e.g. Galerkin and finite- 
difference methods), and the results obtained by the various techniques are generally 
in good agreement with each other. In order to compare our experimental results 
with these calculations, the calculated Nusselt number Noo(e, k, a) has been para- 
meterized as a function of reduced Rayleigh number E ,  wavenumber k, and Prandtl 
number a. 

For two-dimensional convection in a laterally infinite box the Nusselt number 
N,(E, k, u) is parameterized primarily from the calculations of Busse (1967) and 
Clever & Busse (1974),t since together they provide a consistent set of data over a 

t Willis, Deardoe & Somerville (1972) presented a simple parameterization of the Nusselt 
number as a function of R, k, and u ;  however, the parameter range for its validity and the degree 
of accuracy were not sufficient for satisfactory comparison with our experimental data. 
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FIGURE 5. Nusselt number as a function of Rayleigh number for various values of the wavenumber 
with (T = 7 from the model of 84.1. (a) small R/Rc (plotted on a log-log scale); (a) large R/R,  (linear 
scale). The quantities plotted on each axis are chosen to illustrate clearly the Rayleigh-number and 
wavenumber dependence of the Nusselt number. 

wide parameter range. Both works use a Galerkin procedure, starting from the 
Oberbeck-Boussinesq approximation to the Navier-Stokes equations. The cal- 
culations of Busse (1967) are for infinite Prandtl number, while Clever & Busse (1974) 
present results for Q = 7 and for several values of Q < 1. The model also incorporates 
the neutral stability curve, R,(k) (cf. Chandrasekhar 1961). These data are 
combined into a 35-parameter model using nonlinear interpolation algorithms such 
as nonlinear least squares. The resulting fit, which is illustrated in figures 5 and 6, has 
smooth derivatives while matching the input data to better than 1% (0.1% is 
typical). In  fact, our fit also matches the data of Plows (1968) and Lipps & Somerville 
(1971) to better than 1 % and is consistent with the predicted slope (W/dR near 
R, (Schluter, Lortz & Busse 1965 and Clever & Busse 1974). 

= 7 since the agreement between different sources is best 
near this Prandtl number (cf. figure 7) .  Although for r~ % 1 our model closely 

Our fit is optimized for 
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FIGURE 7. Comparison of various calculations of Nusselt number with our ‘model ’. Calculations are 
for infinite aspect ratio and wavenumber k, = 3.1 17. (a) Neal, compared with model at fixed Prandtl 
number (a = 7); (b) N,,,, compared with model (Prandtl number same aa the experimental a). 
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FIGURE 8. Comparison of Nusselt number calculations of Clever & Busse (1974) with our model for 
several wavenumbers and small Prandtl numbers. (a) Prandtl number of the model fixed at cr = 7 ;  
( b )  Prandtl number of model matched to calculations. 

approximates the calculations of Busse (1967), the Prandtl-number dependence of 
the Nusselt number is very weak, and even the sign of change in N with increasing 
(i is uncertain from comparison of the several calculations. For CT < 7, Prandtl- 
number dependence is more significant, but calculated data are sparse, especially for 
wavenumbers away from k, = 3.117 (cf. figure 8). Nevertheless, the model should be 
accurate within 1 % for all (i 2 1. 

4.2. The amplitude equution and the efSect of sidewalls 
The amplitude equation was first derived by Newel1 & Whitehead (1969) and Segel 
(1969) for the case of free horizontal boundaries and later extended by Wesfreid et al. 
(1978) and Cross (1980) to the cam of rigid boundaries. The amplitude equation, 
which is derived from the full Boussinesq approximation to the hydrodynamic 
equations, describes the slow temporal and spatial variations of velocity and 
temperature near the onset of convection in terms of a real order parameter !?'((r, t ) .  
Conventionally, Y is normalized so that the convective heat flux is given by 

where S is the area of the container, N is the Nusselt number, and R, is the critical 
Rayleigh number for onset of convection. It is convenient to write the amplitude 
equation in the form (Ahlers et al. 1981) 

8 FLM 186 
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where r0 and g are functions of Prandtl number, E = R / R c ,  and 6; is the curvature of 
the neutral stability curve at  the critical wavevector qo. 

For a system of convective rolls with axes parallel to the y-direction, the solution 
to (1)  can be written 

(2) 

where A(r,  t )  is a slowly varying complex function. For steady convection 3Ala.f = 0, 
and the amplitude equation (1) becomes (Newel1 &, Whitehead 1969; Ahlers et al. 

Y(r, t )  = 2/2 Re [A(r ,  t )  eiQoz], 

1981) 

If lateral boundaries are now imposed on the flow, the mechanical boundary 
condition at the sidewalls is expressed by 

Y = fi.VY = 0, (4) 

where f i  is the unit vector perpendicular to the lateral boundary (Zaleski et al. 
1984). 

The lateral boundary conditions have been derived only for the case of free upper 
and lower boundaries with ‘ideal ’ sidewalls which are perfectly insulating or 
perfectly conducting (Brown & Stewartson 1977). It has been shown that the 
boundary conditions for sidewalls parallel to the rolls are not affected by the thermal 
conductivity of the walls to lowest order in E (Cross et al. 1980), provided there is no 
net heat transfer through the walls (Ahlers et al. 1981). Since (4) is sufficient at  least 
to lead to a well-defined solution to the amplitude equation, we shall not tackle the 
more difficult problem of defining the appropriate thermal boundary conditions 
(studied for special cases by Cross et al. 1983 and Daniels 1977). 

We now derive expressions for the attenuation of Nusselt number due to the 
presence of sidewalls by calculating the boundary-layer profile for rolls parallel to 
sidewalls and for rolls perpendicular to sidewalls. 

4.2.1. Rolls parallel to sidewalls 
Consider first a system of convective rolls parallel to the y-axis (figure 9a), infinite 

in length, but confined between sidewalls at  x = 0 and x = L. A t  least for large E or 
large L (and following the experiments of Wesfreid et al. 1978) we expect the solution 
to give rolls of nearly uniform amplitude away from the boundaries, and that the 
amplitude will be substantially attenuated within the boundary layer near each 
sidewall. Equation (3) now reduces to 

The full spatial dependence of Y is given by Y = A,(x)  sin ( q o x + $ ) ,  and the 
boundary conditions (4) require that $ = 0 and A, = 0 at x = 0, L. The solution to 
(5) ,  which is discussed in Appendix A, gives the Nusselt number N as the product of 
two parts: 

where f ( ~ )  is the asymptotic solution for L +  00 (infinite aspect ratio) and al(e,  L )  
represents the attenuation due to the presence of the lateral boundaries. 
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X- 

FIGURE 9. (a) Infinite rolls parallel to rigid sidewalls; (b) rolls perpendicular to rigid sidewalls. 

4.2.2. Rolls perpendicular to sidewalls 
Now consider an infinite system of convective rolls parallel to the y-axis and 

confined between sidewalls at  y = (figure 9 b ) .  Again, for large e or large M 
we expect the rolls to be of uniform amplitude away from the boundaries (i.e. near 
y =  0), and that the amplitude will be substantially attenuated within the 
boundary layer at  the roll ends. For this case (3) reduces to 

with Y = A,(y) sin (pox+$) and 4 arbitrary. From (4) the boundary conditions are 
A, = aA,/ay = 0 at y = *fM. The solution to (6), which is discussed in Appendix B, 
gives a Nusselt number in the form 

( N -  1) R 
n = ly12 =f(e) a,(€, M ) ,  
% 

where f ( e )  is the asymptotic solution defined above and a,(e,M) represents the 
attenuation due to the presence of the end boundaries. 

4.3. The combined model 
We now combine the models discussed in $84.1 and 4.2 so that 

N = [Nao(e, k, B ) -  11 al(e, L)  a,(€, M )  + 1. 
8-2 



222 R. W .  Walden, P .  Kolodner, A .  Passner and C .  M .  Surko 

It is expected that the picture of flow attenuation in a boundary layer adjacent to 
each sidewall is qualitatively correct for Rayleigh number and aspect ratio 
moderately large, and the experimental data in $5 are in good agreement with this 
picture. However, several limitations of the model deserve discussion. 

For small aspect ratio or small B (i.e. for B; r, 5 €4 & 5 1) the problem is clearly not 
two-dimensional, and separation of (2, y) variables as we did to obtain the 
coefficients a,, a2 is not valid. Furthermore, for small E and r the rolls are not strictly 
two-dimensional ; as pointed out in $3, departures from the ‘finite-roll ’ approxi- 
mation decrease R, and, of course, affect heat transport as well. 

For E and r large, the amplitude envelope requires higher-order terms in k and B 

to properly account for sidewall attenuation. On the other hand, the sidewall 
boundary layers in this case represent only a small fraction of the fluid layer, so that 
a moderately large adjustment to the boundary-layer amplitude may imply only a 
small change in the total heat transport. 

5. Comparison of data with the model 
The experimental measurements of Nusselt number were presented in figures 3 and 

4 for those cases in which the flow pattern is substantially two-dimensional so that 
the roll wavenumber is well defined. In  figures 10 and 11 the experimental data have 
been normalized by a calculated Nusselt number derived from the phenomenological 
model presented in the preceding section. In order to facilitate the best comparison 
possible, the experimental Nusselt and Rayleigh numbers were adjusted to 
compensate for the offset errors indicated in table 2 ;  that is, for each Prandtl 
number, all the data were compensated by the amount required so that 1 = 1 for 
R < R,, where fl is the mean experimental Nusselt number. Similarly the 
experimentally determined R, was shifted to match the critical Rayleigh number of 
the model. As table 2 implies, these adjustments are collectively random in sign and 
magnitude, so that the primary effect of compensation is to reduce the large scatter 
in the data at  small Rayleigh numbers. 

Each section of figures 10 and I t  includes the data of all Prandtl numbers for a 
single mean wavenumber. Within the scatter of the data it is clear that the model of 
$4 provides a useful representation of the Nusselt number as a function of the five 
variables: R, k, CT, r,, and 4. 

Figures 10(a) and 11 (a-c) illustrate the effect of significant departures from two- 
dimensional flow. In figure 10 (a), the skewed-varicose instability is responsible for 
the transition at large Rayleigh number to a pattern of fewer rolls. This transition 
is preceded (in Rayleigh number) by substantial distortion of the flow from a pattern 
of parallel rolls which results in a decrease in the Nusselt number. The range of R of 
the pattern distortion is identified for each Prandtl number by the horizontal bars; 
the transition Rayleigh number increases with increasing Prandtl number. Figures 
10 (c-f) show data from patterns of successively longer wavelength. In figure 10, the 
sidewall attenuation factor (a, a,) used in normalizing the data is, for example, 0.654 
at 1.5R,, 0.811 at 5R,, and 0.878 at  20R,. 

As shown in figure 11, the appearance of bimodal convection in response to the 
cross-roll instability at large Rayleigh numbers is reflected in a corresponding 
increase in Nusselt number. As Rayleigh number is increased, bimodal convection 
first begins near the corners of the fluid layer and grows in intensity and spatial 
extent with increasing Rayleigh number until it covers the entire fluid layer. The 
horizontal bars in figure 11 indicate the range in Rayleigh number for which bimodal 
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5 10 20 

Rayleigh number, R/R, 

FIQURE 10. Experimental measurements of Nusselt number normalized by the model calculations 
N ( R ,  u, k, r,, r,) versus Rayleigh number. f, and f, are fixed (see table 1 : Cell A) ;  R, u, and k are 
chosen to match the experimental conditions. 0,  u = 5.5; 0, u = 4.4; 0,  u = 3.5; A, u = 3.0; 
V, cr = 2.2. (a) Ten-roll pattern, (b) estimated uncertainty in experimental results, (c) nine-roll 
pattern, (d) eight rolls, (e) seven rolls, and (f) six rolls. The horizontal bars identify pattern 
distortion due to the skewed-varicose instability. 

convection grows in its spatial extent, starting at the corners, until it fills the 
container. The Rayleigh number for which bimodal convection appears is Prandtl- 
number-dependent, but in each case the measurable increase in Nusselt number 
begins with Reyleigh numbers just above those for which full bimodal convection 
occurs. The Rayleigh numbers at which these transitions occur is somewhat 
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Rayleigh number, R/R, 
FIQURE 11. Experimental measurements of Nusselt number normalized by the model calculations 
N ( R ,  Q, k, r,, r,) versus Rayleigh number. r, and r, are fixed (see table 1 : Cell B);  R, Q, and k are 
chosen to match the experimental conditions, 0,  Q = 19; 0,  Q = 15; A, Q = 11 ; and V, Q = 3.5. 
(a) Flow pattern is four long rolls, (b) eight short rolls, (c )  six short rolls; (d) typical uncertainty 
in experimental results. The horizontal bars identify the range of Rayleigh number for which 
bimodal convection grows in spatial extent. 

subjective, since the transitions are continuous and gradual with changing Rayleigh 
number. In the case of figure 11 (c), convection at  this wavenumber (k = 2.04) is 
unstable to the cross-roll instability for all Rayleigh numbers when (T 2 15, so that 
the pattern is not really two-dimensional for any Rayleigh number. However, the 
appearance of full bimodal convection is still well defined in Rayleigh number and 
corresponds to the onset of an enhancement to Nusselt number. 

Observations of Nusselt number at the onset of time-dependence are shown in 
figure 12 for two Prandtl numbers. In each case the initial flow pattern is six parallel 
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FIQURE 12. Experimental measurements of Nusselt number normalized by the model calculations 
N ( R ,  u, k, r,, r,) versus Rayleigh number, showing the onset of time dependence (marked t). (a) 
u = 3.5; ( b )  u = 5.5; (c) schematic representation of flow pattern evolution with increasing 
Rayleigh number (see text). 

rolls. The pattern becomes slightly distorted with increasing Rayleigh number as 
shown in the centre illustration of figure 12(c), and time dependence begins as a 
standing-wave oscillation localized near one corner of the container (Walden et al. 
1984). With increasing Rayleigh number one or more additional modes appear and 
the oscillations grow in amplitude until the parallel-roll pattern breaks up into a 
more complex pattern with chaotic time-dependent behaviour. The shape of the 
pattern distortion varies somewhat from one trial to another, and consequently so 
does the sequence of transitions with increasing R leading to the pattern break-up. 
For example, we have observed as few as two and as many as five independent 
oscillatory modes prior to the appearance of chaotic time-dependent behaviour. 

The observations of Nusselt number show no measurable change in the time- 
averaged heat transport (relative to the two-dimensional model), even when the 
oscillation amplitude represents several per cent in Nusselt number. 

For Prandtl numbers t~ 2 10 the onset of bimodal convection generally occurs at 
smaller Rayleigh numbers than the onset of time dependence. The model of Frick, 
Busse 81 Clever (1983), using a three-dimensional Galerkin calculation for a fluid 
layer of infinite horizontal extent, shows that bimodal convection enhances heat 
transport by as much as 2iY0 at 15Rc and by as much as 12% at 29Rc. The 
enhancement is a function of R, k, and t~ as well as a strong function of the secondary 
roll (cross-roll) wavenumber L. A good quantitative comparison with our 
experimental results is not possible for two reasons. (i) The secondary roll 
wavenumber k is not always well defined experimentally (see Kolodner et al. 1986), 
and (ii) the calculations of Frick et al. for a limited range of parameters cannot be 
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FIQURE 13. Experimental measurements of Nusselt number normalized by the model calculations 
N(R,  u, k, f,, f,) versus Rayleigh number, showing the effects of bimodal and time-dependent 
convection. Values of N are computed assuming a pattern of six parallel rolls. b and t indicate 
respectively the onset of bimodal convection and the onset of time dependence; the subscripts 
indicate the number of rolls in the flow pattern. (a) u = 1 1 ; ( b )  u = 14; (c) schematic reprcsentation 
of the flow pattern evolution with changing Rayleigh number. 0,  six rolls; 0,  eight rolls; 0,  spoke 
pattern. 

reliably extrapolated to the range of our experimental data. In particular, the 
experimental values of k are all smaller than the critical wavenumber k,, while the 
calculations are for k 2 k,. 

In  spite of these limitations, the experimental data (figure 13) show that bimodal 
convection produces enhancement of the heat transport, which is quantitatively 
consistent with the calculations of Rick et al. The arrows ‘be’ and ‘bg’ in figure 13 
identify the appearance of bimodal convection throughout the convection cell. As 
indicated earlier (in figure 11 b, c) however, cross-rolls appear at the corners of the cell 
at  smaller Rayleigh numbers and expand to permeate the cell with increasing 
Rayleigh number. Heat transport for the six-roll patterns seems to show some 
evidence of the effects of bimodal convection just after the appearance of corner rolls, 
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FIGURE 14. (a) Experimental measurements of Nusselt number normalized by the model 
calculations N(R,  u, k, r,, r,) versus Rayleigh number showing the onset of time dependence for 
v = 19. Values of N are computed assuming a pattern of six parallel rolls. b and t indicate 
respectively the onset of bimodal convection and the onset of time dependence. (b) Schematic 
representation of flow pattern evolution with changing Rayleigh number. 0, six rolls; 0,  eight 
rolls; A, pattern oscillation; 0,  spoke pattern. 

but in all cases there is a sharp increase in Nusselt number after the appearance of 
full bimodal convection. 

Another feature common to these figures is a transition in cW/dR (the rate of 
change of heat transport with changing Rayleigh number) near the onset of time 
dependence. Although the onset of time dependence may be mociated with subtle 
changes in the flow pattern which also affect heat transport, we have no intuitive 
explanation of this observation. Theory does not offer any direct insights either. 
Although there have been computational studies of the instabilities of three- 
dimensional flows, these models have not yet been extended to address the question 
of interest here. 

For Q = 19, heat-transport measurements and some of the associated flow patterns 
are illustrated in figure 14. For this Prandtl number, a six-roll pattern is distorted by 
the cross-roll instability for all Rayleigh numbers. Although there are several pattern 
changes in the time-dependent regime for R > 40R,, the mean Nusselt number seems 
to be influenced very little by the dominant pattern (imposed on a turbulent 
background). For UR, 5 R 556R,, there is a strong oscillation of the flow 
boundaries with a period of several seconds. For 56R, 5 R 5 61R,, the dominant 
convective flow boundaries wander slowly, twist, break up and re-form; it appears 
that the natural wavelength of the flow is mismatched with the container dimensions 
for this range of Rayleigh numbers. For R > 61R,, there appears to be spoke-pattern 
convection for which two adjacent spoke-pattern cells fill the container. Whitehead 
& Chan (1976) observed similar spoke patterns in a large container at lower Rayleigh 
numbers. 
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6. Summary 
It is clear that changes in heat transport are closely related to changes in the flow 

pattern, and that these changes are significantly influenced by the container 
geometry. The studies of Davis (1967), Catton (1972a, b ) ,  B. F. Edwards (1986, 
private communication) and others have shown the strong influence of lateral 
boundaries on the critical Rayleigh number R,. We have demonstrated experi- 
mentally that heat transport is also substantially influenced by the lateral 
boundaries and that, provided the convection is basically two-dimensional, the 
influence of the lateral boundaries can be represented by a boundary-layer model. 
While the details of the specific model presented here should not be taken too 
seriously, the model represents a useful tool for estimating quantitatively the 
influence of lateral boundaries on the heat transport of two-dimensional convection. 

With a heuristic two-dimensional model in hand, we have been able to examine 
quantitatively perturbations in the heat transport due to three-dimensional 
instabilities. Pattern distortion initiated by the skewed-varicose or knot instabilities 
leads to a pattern of fewer rolls and causes a decrease in the heat transport. In 
bimodal convection, however, the heat transport is enhanced by the appearance of 
the cross-rolls. Finally, the onset of time-dependent behaviour seems to have no 
intrinsic effect on the mean Nusselt number unless it is associated with significant 
pattern changes. 

Our observations of flow patterns very near R, confirm that the flow is three- 
dimensional, as suggested by the calculations of B. F. Edwards (1986, private 
communication) and Greenside & Coughran (1984). For very large R, it is also clear 
that three-dimensional models are required to describe the flow properties including 
heat transport. For intermediate Rayleigh numbers we have shown that a two- 
dimensional model provides a good representation of the transport properties, 
provided the flow pattern is known and the effects of finite aspect ratio are included. 
That is, a model which includes both the fluid variables and the container 
geometry - R, u, k and the container aspect ratios - is both necessary and sufficient 
to determine the heat transport accurately. 

For a container of infinite aspect ratio, the Galerkin calculations predict that 
dN/dR monotonically decreases above R,. Our model for the effects of finite aspect 
ratio shows a maximum in dN/dR for R > R, (i.e. for E - 0.1, choosing parameters 
typical of our experiments). Although our experiments are in good agreement with 
dN/dR for e 2 1, our present apparatus does not have the sensitivity near R, to 
test this prediction. 

Kinks in the slope of the experimental measurements of Nusselt versus Rayleigh 
number reported by many observers (cf. Krishnamurti 1973) now appear to be 
associated with transitions in the flow pattern, at least in the range of Rayleigh 
numbers (R ;S 80R,) studied in our experiments. Perhaps there are also structural 
changes in the turbulent flow which account for the kinks in Nusselt versus Rayleigh 
curves at much higher Rayleigh numbers as discussed in $1.  

We wish to acknowledge helpful discussions with H. S .  Greenside and P. C. 
Hohenberg, and the extensive technical assistance of G. Dimino and N. Hartsough. 
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Appendix A. Convection rolls parallel to sidewalls 

is given in $4 .2 :  
The equation for the amplitude envelope for convection rolls parallel to sidewalls 

c(Z) = -4+glA1I2A, ,  (A 1) 

with boundary conditions A, = 0 at x = 0, L. 
Guyon & Rudnick (1968) have shown that the general form of (A l), 

has the solution 

where sn is a Jacobi elliptic function of modulus k t ,  and q5 and k are determined by 
boundary conditions. 

Hence the solution to (A 1) can be written 

A ,  = (;r( l + k 2  2k2 r sn@x + c ,  k ) ,  

where p 2  = ~/g(l+ k2) .  The boundary condition A, = 0 at x = 0 gives c = 0, and the 
condition A, = 0 at  x = L leads to 

where K ( k )  is the complete elliptic integral of the first kind, and n is an integer. The 
only non-zero, dynamically stable solution is for n = 1 (Wesfried et al. 1978), so that 
IA 3) becomes 

pL = 2nK(k) ,  (A 3) 

(A 4 )  

Since K ( k )  is defined only for 0 < k < 1, we find that a solution to (A 4 )  exists (i.e. 
that convection is possible) only for E larger than E ,  = n2[:/L2. For E near E ,  (i.e. for 
k + 0) the envelope amplitude approaches a sinusoidal shape 

while for large E (i.e. pL % I ,  k +  1) the boundary layer near each wall takes the form 
(Wesfried et al. 1978) 

A, = - tanh(pz), x<+L.  (;Y 
The heat flux is computed from the definition in $4.2 with 

t In  this Appendix only, k is the modulus of the elliptic functions ; elsewhere it represents roll 
wavenumber. 
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FIQURE 15. Heatitransport attenuation coefficients a, as a function of &L and a2 as a function of 
ETM. (a, and us are defined in Appendices A and B respectively.) 

Using the substitution u = px, 

where E is the elliptic integral of the second kind and am is the elliptic amplitude. 
Using the boundary condition (A 4) and the identity E(am(K(k), k)) = E(k), 

where k is determined from (A 3). In (A 6) g is a function of Prandtl number 
computed by Schluter et al. (1965) and Cross (1980) for the case of rigid horizontal 
boundaries, and 6; is the curvature of the neutral stability curve at  its minimum a t  
R = R,. For rigid boundaries, 6; = 0.148. 

The solution (A 6) may be written as the product 

I $ v  = f (4  al(G 4,  

where f(~) = ( s / g )  is the asymptotic solution for L + 00, and 

represents the attenuation due to finite aspect ratio. 
Figure 15 illustrates a, as a function of E and L. 
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Y 
FIQURE 16. Convective amplitude envelope for sidewalls peryndicular to the convective rolls 

(figure 8 b )  for various values of @M, 

Appendix B. Convection rolls perpendicular to sidewalls 

y = +_fM is given in $4.2: 
The equation for the amplitude envelope for rolls perpendicular to sidewalls at  

with boundary conditions A, = aA,/ay = 0 at y = &fM. 
The scaled form of this equation is 

a 4  Y -- 
a!P - y - y 3 ,  

for which a solution can be obtained by numerical methods in the form 

in 

Y(Y) = x a,$/,, 
2 -0  

where the a, depend on the boundary conditions. Then the solution to (B 1) may be 
written 

The critical wavenumber qo = 3.117; 
Representative solutions to (B 1) are illustrated in figure 16. For the boundary 

conditions indicated above, there is a minimum 6 for which a non-zero solution exists 
(i.e. for which convection is possible) given by 

and g are defined in Appendix A. 
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For small B ,  a Fourier expansion of amplitude envelope is dominated by the 
Fourier component cos2 ( n z / M ) .  For large 8 the central region is nearly uniform in 
amplitude, while there are sharply defined boundary layers at  each sidewall. 

The heat flux is computed numerically from the definition in $4.2 with 

Solutions to (B 5) can be written as the product 

I@l2 = fC4 %(€, M )  

wheref(s) = ( c / g )  is the asymptotic solution for M + a, and a2(q M) represents the 
attenuation due to finite aspect ratio. The attenuation coefficient a2(q M) is 
illustrated in figure 15. 
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